TcSUH
Warning: Undefined variable $events_postname in /home1/tcsuh570/public_html/events_select2.php on line 105
Special Seminar
Interface Engineered Metamaterials for Energy Harvest and Storage
Date: Thursday April 28, 2011
Time: 4:00 pm – 6:00 pm
Location: Science & Research Building 1 – Building 550 — Room 634
Overview
The last few decades have seen an explosion in the development of new materials with unique physical properties for sustainable energy harvest and storage applications, driven in parallel by the demands of technology and the inquisitiveness of basic sciences and engineering. Solid Oxide Fuel Cell devices (SOFCs) have promised a high-energy efficiency for sustainable energy producing technology. We have developed a unique interface engineered nano-technique for new materials fabrication and novel concept device development, and successfully achieved various excellent results. We have demonstrated that the interface engineered YSZ/GCO heterostructures have excellent oxygen exchange properties for the development of an intermediate temperature solid oxide fuel cell (IT-SOFC); the double perovskite PrBaCo2O5.5 highly epitaxial films have ultra fast oxygen exchange kinetics; and the ordering/disordering nanostructural double perovskite LaBaCo2O5.5 structures have ultra sensitive oxygen exchange properties and stable chemical nature for the development of high temperature chemical sensors and membranes in the high temperature reduction environment. We also have successfully achieved the direct integration of interface engineered ferroelectric heterostructures on polycrystalline metallic tapes with excellent dielectric property for the next generation of supercapacitance devices for energy storage applications. Details will be discussed in the talk.
Back to TcSUH News & Events
Special Seminar
Solid State Metathesis Reactions as a Conceptual Tool in the Synthesis of New Materials
by: Prof. H. -J. Meyer
Date: Friday March 25, 2011
Time: 12:00 pm – 1:00 pm
Location: Houston Science Center – Building 593 — Room 102
Overview
Solid state metathesis reactions can be used in the syntheses of inorganic solids and for strategic design of novel, eventually thermally labile materials. An explorative study of solid state metathesis reactions is presented for a number of examples, including syntheses of nitridoborates, carbodiimides, tetracyanoborates, tetracyanamidosilicates, carbon-nitride materials, and a number of other exciting compounds. This unique type of reaction is very efficient because it uses the intrinsic energy of reaction partners being involved. Desired compositions are achieved by appropriate starting materials and their relative amounts being combined into a solid state metathesis reaction. Reactions can be controlled through the heating-up procedure and by using a reactive flux, which may lower the ignition temperature of a reaction mixture and promote crystal growth of products.
Back to TcSUH News & Events
Special Seminar
Magneto-Optical Properties of Graphene Layers: a Tight-Binding Study
by: Dr. Yen-Hung Ho
Date: Thursday March 10, 2011
Time: 12:00 pm – 1:00 pm
Location: Houston Science Center – Building 593 — Room 102
Overview
A complete tight-binding model is developed to study the electronic and optical properties of graphene layers in response to magnetic field. Since the magnetic field and all atomic hoppings are simultaneously taken into account without introducing any approximation, the calculated results are accurate over a wide energy range. The wave functions and their spatial distributions appropriately characterize the Landau levels. Moreover, the concept of sublattices provides a straightforward way to clearly identify the optical spectra, including the selection rules and relative absorption rates. The spectral structures are substantially impacted by the interlayer interactions and the stacking sequence. Our numerical results can provide guideline and new spectral features for future experiments.
Back to TcSUH News & Events
Special Seminar
What Kind of Stars Made the Calcium in your Bones?
by: Dr. Typhoon Lee
Date: Tuesday March 08, 2011
Time: 4:00 pm – 5:00 pm
Location: Houston Science Center – Building 593 — Room 102
Overview
The Ca in our body were all made in other stars that contributed ejecta from their nuclearly processed interior to the proto-solar molecular cloud. The subsequent evolution will change the elemental ratios but not isotope ratios. Thus the six stable isotopes of Calcium (Ca-40, 42, 43, 44, 46, and 48 plus the radioactive Ca-41) constitute an extremely powerful tool to trace the nuclear astrophysical origin of the building material used to make our planetary system and ourselves. I will show that several processes in supernova type I and type II as well as AGB stars were involved. I will also show the most up-to-date high precision data for the earliest solid in the solar system. They not only gave us lots of insight in the late stage evolution of massive stars but also seduce us to speculate on the last minute contamination from a neaby supernova just when the planetesimals were accreting into planets.
Back to TcSUH News & Events
Special Seminar
Single Impurity Problem in Ultracold Atomic Fermi Gases----Whether Fully Polarized Ferromagnetism is Possible under Repulsive Interaction
by: TcSUH Administration
Date: Thursday January 06, 2011
Time: 4:00 pm – 5:00 pm
Location: Houston Science Center – Building 593 — Room 102
Overview
Ultracold atomic physics have achieved great developments, in both experimental and theoretical aspects, during the past decades. In this talk, I will first give a brief introduction of cold atoms and some recent experimental developments. I will then focus on one of our recent works in understanding magnetism and correlation effects in repulsively interacting two-component Fermi gases. This is motivated by a recent expermimental work done by MIT on itinerant ferromagetism(FM) in cold fermions(Science 325, 1521(2009)). Specifically we use variational approach to study whether a fully polarized Fermi sea of ultracold atoms is energetically stable against a single spin flip.We find that for both lattice and continuum models, fully polarized FM is generally not stable even for infinite repulsive strength. However for a resonance model FM is possibly stable as long as s-wave scattering length is large and positive and the system is prepared in the metastable scattering branch.
Back to TcSUH News & Events