Liangzi Deng

Texas Center for Superconductivity	Department: Physics	
3369 Cullen Blvd., HSC 202	College: NSM	
Houston, Texas 77204	Address: Science and Research Building 1	
Phone: (713) 743-3728	3507 Cullen Blvd., Room 617	
Email: ldeng2@central.uh.edu	Houston, TX, 77204-5005	
	Phone: (713) 743-3550; Fax: (713) 743-3589	

Education:

B.S.	Wuhan University, China		2006 – 2009
Ph.D.	University of Houston, TX	Ph.D. Advisor: Ching-Wu Chu	2009 – 2015
Emplo	yment History:		
Assistant Professor, University of Houston		2024 – Present	
Research Assistant Professor, University of Houston			2020 – 2024
Research Associate II, University of Houston			2018 – 2020
Postdoctoral Fellow, University of Houston		2015 – 2018	
Award	s and Honors:		
 Materials Research Society Outstanding Early Career Researcher Award 		2024	
• Ro	bert A. Welch Endowed Profe	ssorship, Welch Foundation and TcSUH	2024
• Re	ecognized as a University of Ho	ouston 50-in-5 Scholar	2019 and 2021
Synerg	sistic Activities:		
• Se	rving on the editorial board of	f Frontiers in Electronic Materials	2021 – Present
• Ex	ecutive guest editor of		
"R	oadmap to Next Breakthroug	ns in Superconductivity" in Next Materials	2023 – 2024
"Р	hysics under High Pressure" ir	n Materials Today Physics	2022 – 2023
"Р	aths to high-temperature sup	erconductivity with or without pressure" in Frontiers	2021 – 2022
• Or	ganizer of Superconductivity	Symposium in MRS Spring Meeting	
"S	ymposium QT04: Supercondu	cting Materials"	2024
"S	ymposium NM01: Supercondu	uctors as Quantum Materials"	2021

Recent Research Highlights:

- Developed and demonstrated successfully a pressure-quenching protocol (PQP) to retain phases at ambient pressure with desired properties induced/enhanced by high pressure with profound implications for high-temperature superconductivity/room-temperature superconductivity science and technology and beyond.
- Discovered a common superconducting T_c resurgence and a large T_c enhancement of the BSCCO family to beyond the maximum T_cs predicted by the universal relation between T_c and doping (*p*) or pressure (P) under P, which suggests that higher T_cs can be achieved by breaking away from the universal T_c-P relation through the application of higher pressures.
- Successfully enhanced the skyrmion phase region from the small range of 55 to 58.5 K to 5 to 300 K in single-crystalline Cu₂OSeO₃ by applying pressures up to 42 GPa through a series of phase transitions, providing a paradigm to expand skymion phase region and suggesting the insensitivity of skyrmions to the underlying crystal lattices.

Five Selected Publications/Link to full list via Google Scholar (Total: 73 publications, 2775 citations):

https://scholar.google.com/citations?hl=en&user=Pb_8DJ8AAAAJ&view_op=list_works&sortby=pubdate

(#: co-first author, *: co-corresponding author)

1. Liangzi Deng* *et al.*, "Effect of Fermi surface topology change on the Kagome superconductor CeRu₂ under pressure", *Mater. Today Phys.* 40, 101322 (2024).

2. H. M. Zhang[#], Q. X. Liu[#], Liangzi Deng[#] et al., "Room-Temperature Ferromagnetism in Epitaxial Bilayer FeSb/SrTiO₃(001) Terminated with a Kagome Lattice", *Nano Lett.* 24, 122 (2023).

3. Liangzi Deng* *et al.*, "Pressure-induced high-temperature superconductivity retained without pressure in FeSe single crystals", *Proc. Natl. Acad. Sci. USA* 118, e2108938118 (2021).

4. Liangzi Deng[#], H. C. Wu[#] et al., "Room-temperature skyrmion phase in bulk Cu₂OSeO₃ under high pressures", Proc. Natl. Acad. Sci. USA 117, 8783 (2020).

5. Liangzi Deng *et al.,* "Higher superconducting transition temperature by breaking the universal pressure relation", *Proc. Natl. Acad. Sci. USA* 116, 2004 (2019).