Back home

Back home

UH logoHouston Science CenterBuilding 593 – (713) 743-8200

TcSUH Events

Home » Events » Special Seminar

Special Seminar

A Study of the Electrochemically Oxidized La2CuO4+δ

Prof. Pei  Hor

by: Prof. Pei Hor

Date: Friday October 30, 1998

Time: 12:00 pm – 1:00 pm

Location: Houston Science Center – Building 593 — Room 102

Overview

It is recognized that the single most important and universal parameter in high [Tc] is the “nominal” hole concentration p. We argue that the La2CuO4+δ system exhibits real intrinsic behaviors of doped holes around room temperature. Using the La2CuO4+δ as a model system and taking advantage of precise control of p by electrochemical intercalation technique, we will address some critical issues concerning the universal electronic phase diagram of high [Tc]. We will first focus on the metal-insulator transition and the onset of superconductivity at the critical hole concentration pc = 0.0625. It is found that the metallic state of high [Tc] is composed of two types of holes: Free holes on top of an underlying more localized condense. The existence and physical significance of some special hole concentrations will also be discussed.

Special Seminar

The National Technology Roadmap for Semiconductors and SEMATECH's Doping Program

by: Dr. Lawrence A. Larson

Date: Wednesday October 28, 1998

Time: 2:30 pm – 3:30 pm

Location: Houston Science Center – Building 593 — Room 102

Overview

SEMATECH sets its strategy and project directions through a series of advisory boards consisting of technical experts from the member companies. Early in the 90's the SIA (Semiconductor Industry Association) requested a longer term strategic plan covering the directions of the US semiconductor industry. This document is now in its fourth revision and is called the NTRS (National Technology Roadmap for Semiconductors). The NTRS has become the longer term strategic plan for SEMATECH and for the SRC.

This talk will describe the part of the roadmap that concerns doping technology and device characteristics. The connection of this document to the needs of the member companies gives the SEMATECH Doping Program its project directions. These are cross-checked through technical Working Groups and advisory boards. Presently, topics of interest include alternate boron dopants, molecular implants such as Decaborane, low energy implant, alternative doping/implant techniques (PLAD, PIII and PGILD), and alternative annealing technologies such as Fast Ramp Rate RTP and Laser Thermal Processing.

Special Seminar

Molecule and Crystal Engineering of High-Tc Structures and Devices

by: Prof. John T. McDevitt

Date: Friday September 25, 1998

Time: 12:00 pm – 1:00 pm

Location: Houston Science Center – Building 593 — Room 102

Overview

In an attempt to foster more rapid developments in the areas of high-[Tc] superconductivity and macromolecular electronic devices, our group has recently initiated a series of studies designed to explore fundamental issues related to the chemistry of high-[Tc] compounds. Knowledge in this regard is particularly important because the poor reactivity problems and materials processing limitations have hampered developments in this area. From our studies, we have identified lattice stress and strain as important variables which influence the environmental reactivity of the most popular high-[Tc] superconductor compound, YBa2Cu3O7. Using solid-state substitution reactions, we have tailored the high-[Tc] lattice so as to relieve the internal stress and strain. Consequently, formulations such as Y0.6Ca0.4Ba1.6La0.4Cu3O7 have been prepared that exhibit both excellent stability and good superconducting properties. Armed with detailed fundamental knowledge of the surface and interface properties of the high-[Tc] materials, our group has completed the initial studies in a new area of research which involves the study of superconductor elements that are derivatized with molecular compounds. Consequently, we have designed, fabricated and tested the first two classes of molecule/superconductor devices. Through the combination of carefully chosen photoactive and electroactive molecular assemblies with high-[Tc] electronic devices, we have shown that it is possible to engineer the molecular layer so that a number of structures can be prepared to serve a variety of applications.

Special Seminar

Fabrication and Characterization of Superconducting Bi-2223/Ag Tapes with High Critical Current Densities in km Lengths

by: Dr. Zhenghe Han

Date: Monday September 21, 1998

Time: 11:00 am – 12:00 pm

Location: Houston Science Center – Building 593 — Room 102

Overview

High critical current density, long-length Bi-2223/Ag tapes are needed for large-scale applications. I will describe our recent results reaching critical current densities of 23 kA/cm2 and engineering critical current densities of 5.2 kA/cm2 at 77 K over the whole length of 1250 m Bi-2223/Ag tapes. To our knowledge, this is the highest critical current density reported for Bi-2223/Ag tapes longer than 1 km. Detailed measurements of the critical current over the 1250 m tape by both the conventional four-probe method and a specially developed continuous measurement of the remanent field by Hall probes will be reported. Various Ag alloy sheathed Bi-2223 tapes have been made by our standard production line. The approach for improving the homogeneity and considerations to be made in processing and handling the long tape will be presented. Electrical, mechanical, and thermal properties of our Ag alloy sheathed tapes, including Ag-Au alloy sheathed tapes, will also be described.

Special Seminar

Al-Cu Approximates in the Al3Cu4 Alloy

by: Prof. Chuang Dong

Date: Thursday September 03, 1998

Time: 11:00 am – 12:00 pm

Location: Houston Science Center – Building 593 — Room 102

Overview

In the binary alloy systems constituting the ternary Al-Cu-TM (transition metal) quasicrystalline systems, many metastable quasicrystals have been found in Al-rich Al-TM systems, but little has been done in the Al-Cu system. The latter system has been addressed only recently because the only Al-rich Al-Cu phase is the non-approximate Al2Cu phase. The present talk will report on an investigation of the Al3Cu4 alloy, with an e/a ratio of 1.86, close to ternary Al-Cu-TM quasicrystals, in the search for Al-Cu approximates. Principal results include: 1) two new phases, a face-centered orthorhombic oF-Al43.2Cu56.8 (a = 0.8166, b = 1.4149, c = 0.9995 nm) and a body-centered orthorhombic oI-Al41.3Cu58.7 (oI, a = 0.4083, b = 0.7074, c = 0.9995 nm), were found; 2) the twinning modes of these phases suggest that they are the decomposition products of a high-temperature parent phase e2-Al2Cu3, the atomic structure of which contains pentagonal atomic arrangements; and 3) the chemical-twinning mode of their basic structure B2 is 180[deg]/<111>, which is responsible for the pentagonal atomic configuration in the Al-Cu approximates as well as for the pseudo 5-fold B2 twinning.

Some preliminary friction tests on such B2-based approximates show that these phases have friction behaviors similar to those of quasicrystals.

Back to the top of the page

Copyright © 2009 Texas Center for Superconductivity (TcSUH) – 3201 Cullen Suite 202, Houston, Texas 77004 – (713) 743-8200 – Houston Science Center – Buillding 593 – Mail Code: TCSUH 5002

Problems or feedback? Email: